PH计的功能主要包括以下方面:
一、核心测量功能
pH值测定
通过电位法测量溶液中氢离子浓度,并转换为pH值显示12。
利用参比电极和玻璃电极组成原电池,通过测量电位差计算pH值23。
温度补偿
内置温度传感器或手动调节温度补偿旋钮,消除温度对测量的影响12。
二、类型与应用场景
在线PH计
实时监测液体pH值,支持自动化数据记录和传输,适用于工业流程控制(如化工反应监测)及环境水质监测45。
具备抗干扰设计,适应复杂工业环境5。
便携式/笔式PH计
便携式仪器适合现场快速检测,精度较高;笔式PH计操作简便,常用于替代试纸的粗略测量17。
三、校准与维护功能
校准功能
需使用标准缓冲液进行校准,确保测量准确性;在线PH计支持自动校准,减少人工干预34。
提供多种标定方式(如手动输入零点、斜率调整),适应不同场景需求56。
电极监测与数据记录
记录每次校准的时间、方式及结果,便于分析电极性能变化67。
历史数据存储功能(如连续30天记录)支持回溯分析56。
四、附加功能
智能控制与输出
支持4-20mA电流输出或RS485通讯接口,实现远程监控及系统集成56。
报警功能可设置上下限,触发后通过继电器或隔离信号输出56。
用户交互与显示
多参数同屏显示pH值、温度、时间及状态信息57。
中文操作界面和引导式菜单降低使用门槛56。
五、特殊场景优化
纯水测量:对超纯水进行25℃基准温度折算,解决低电导率液体测量难题56。
稳定性保障:采用看门狗程序防止设备死机,确保连续运行可靠性
PH计原理详解
PH计基于电位法测量溶液的氢离子浓度,通过电极系统将化学信号转换为电信号,终输出pH值。其核心原理可分解为以下部分:
一、基本结构:原电池系统
PH计由参比电极和指示电极(通常为玻璃电极)组成,两者浸入溶液后构成原电池:
参比电极:电位稳定不变(如甘汞电极),提供恒定参考电势13。
指示电极(玻璃电极):其玻璃膜对氢离子敏感,电位随溶液中氢离子浓度变化15。
两电极间的电位差与溶液pH值呈对应关系24。
二、核心原理:能斯特方程
原电池的电动势(E)与氢离子活度([H⁺])的关系遵循能斯特方程:
�
=
�
0
+
2.303
�
�
�
⋅
pH
E=E
0
+
F
2.303RT
⋅pH
其中:
�
0
E
0
为标准电极电位;
�
R 为气体常数;
�
T 为温度;
�
F 为法拉第常数25。
通过测量电位差,仪器可直接计算出pH值(氢离子浓度的负对数)56。
三、电极响应机制
玻璃电极工作原理
玻璃膜表面与溶液接触时,膜内的硅酸盐结构允许氢离子选择性渗透,形成离子交换层,产生膜电位56。
膜电位大小取决于溶液与电极内缓冲液(通常pH 7)的氢离子浓度差58。
温度补偿
温度影响电极响应斜率(2.303RT/F项),需通过内置传感器或手动输入温度值进行补偿,确保测量准确性47。
四、测量系统工作流程
信号采集:原电池产生的微弱电信号经高阻抗电路放大13。
信号转换:通过模数转换器(ADC)将模拟信号转为数字信号35。
数据处理与显示:根据校准曲线(预先通过标准缓冲液标定)计算pH值,并实时显示13。
五、校准与稳定性
校准必要性:电极长期使用后膜特性可能漂移,需定期用标准缓冲液(如pH 4.01、6.86、9.18)重新标定零点与斜率35。
参比电极维护:需保持内部电解液充足,避免液接界堵塞导致电位异常
PH计常见故障维修方法
一、电源与显示异常
无显示或数字乱跳
原因:电源线松动、保险丝熔断或输入端开路。
维修步骤:
检查电源线和插座连接是否正常23。
更换损坏的保险丝23。
插入短路插头或电极插头(若输入端开路)23。
显示“超出范围”
原因:电极未浸入样品、保湿帽未移除或电极损坏。
维修步骤:
确保电极完全浸入液体并移除保湿帽5。
若仍无效,更换电极56。
二、电极问题
读数不稳定/响应迟缓
原因:电极污染、液接界堵塞或参比液不足。
维修步骤:
用纯水冲洗电极,并用细毛刷清除球泡表面污物47。
补充参比液(如3.3mol/L KCl溶液)并排除液接界气泡46。
严重污染时,浸泡电极于0.1mol/L HCl或5% HF溶液10-20分钟(玻璃电极)14。
电极老化/斜率异常
原因:玻璃膜钝化或内参比液干涸。
维修步骤:
浸泡电极于0.1mol/L HCl 24小时,恢复膜活性47。
补充内参比液或更换电极36。
三、校准失败
定位无法调节至标准值(如pH7.00)
原因:电极失效、缓冲液污染或电路故障。
维修步骤:
更换新鲜缓冲液并重新校准36。
若仍无效,检查电极是否老化需更换23。
斜率超出范围(<85%或>105%)
原因:电极脏污或校准液错误。
维修步骤:
清洁电极后重新校准6。
确认使用未过期的标准缓冲液56。